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Spectral Analysis Considerations Relevant
to Radiation and Leaky Modes of
Open-Boundary Microstrip Transmission Line

Jerry Michael Grimm and Dennis P. Nyquist

Abstract—The continuous radiation spectrum of open microstrip trans-
mission line and its nonspectral leaky modes are conceptualized through
a transform-domain integral-operator formulation and relevant spectral
analysis. Two complex (transform-variable) wavenumber planes are im-
plicated by Sommerfeld-integral representations of associated Green’s
functions and the necessary axial inverse transformation to the space
domain. The radiation spectrum is identified with branch cuts in the
axial wavenumber plane, which constrain the migration of branch-point
singularities in the transverse wavenumber plane. Leaky-wave modes
occur only when the branch cuts in the axial wavenumber plane are
violated, allowing branch points in the transvere wavenumber plane
to migrate across the (initial) real-axis integration path. The relation
between spectral radiation modes, nonspectral leaky-wave modes and
branch cuts in the axial wavenumber plane is discussed. The influence
of branch cuts in the axial wavenumber plane upon the location of
branch points in the transverse wavenumber plane is detailed, and
a rationale is offered for the choice branch cuts in the Iatter plane.
Although the formulation is developed specifically for the microstrip line,
it is applicable more generally to a wide class of open conducting or
dielectric waveguides. It is believed that the ideas presented here are
new and significant, and provide perhaps the first general method for
conceptualizing the continuous spectrum of practical open waveguides.

1. INTRODUCTION

Open-boundary waveguiding systems support not only a finite
number of discrete propagation modes but also a continuum of
radiation modes. Knowledge of these radiation modes is vital for
determination of losses due to radiation at circuit discontinuities,
scattering and mode-conversion from adjacent obstacles, and coupling
into other nearby open-boundary structures [1], [2]. Unfortunately,
the radiation spectrum of most practical open-boundary waveguides,
e.g. microstrip transmission lines, remains undetermined. This has not
deterred the analysis of radiation effects from microstrip transmission
lines, in which the continuous radiation spectrum contribution is
approximated by the leaky-wave modes of the transmission line.
Leaky-wave modes are discrete modes that possess nonspectral
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behavior (exponentially increasing amplitudes in the transverse plane)
and are not part of the proper modal spectrum. When the Steepest
Descent Contour (SDC) integration technique is used, the SDC
sweeps through poles associated with these nonspectral modes (the
leaky-wave poles) for restricted spatial regimes; in these regimes,
the leaky-wave modes approximate the continuous radiation spec-
trum. Consequently, the determination of the leaky-wave modes of
microstrip transmission lines has received much attention [3]-[5].

This paper will present a rationale for the specification of the
radiation spectrum associated with microstrip transmission lines, and
will address the issue of determining the leaky-wave modes of those
structures.

II. DEVELOPMENT OF RELEVANT GREEN’S FUNCTIONS

The configuration of interest is shown in Fig. 1. The microstrip
transmission line lies at the cover-film interface in the cover region
of a tri-layered, planar dielectric background environment. The cover
layer is assumed to be semi-infinite in vertical extent, while the
film layer has a finite thickness and is backed by a perfect electric
conductor. The layer interfaces are assumed to be infinite in transverse
extent, and each layer is homogeneous. A coordinate system is chosen
such that the = and z axes are tangential to the planar interfaces,
while y is normal to those interfaces.

A field incident upon the microstrip structure induces surface
currents; these in turn support a scattered field. By satisfying the
boundary conditions at the surface of the microstrip, an electric field
integral equation (EFIE), formulated in terms of electric _Hertzian
potentials T () supported by the induced surface currents K (7), can
be constructed as
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Uniformity of the background environment parallel to the xz—z plane
prompts application of a two-dimensional spatial Fourier transform
on the coordinates tangential to the interfaces, defined as
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where X = 26 + 2, A% = € + (%,d?\ = dEd(, and € and ¢
are generally complex-valued spatial frequencies corresponding to
the x and z spatial variables. The necessary Green’s function can
easily be determined in the transform domain [6]; a subsequent two-
dimensional inverse transformation will recover the space domain
quantities.
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The uniformity and infinite extent of the microstrip line in the
agial directigl (z) renders EFIE (1) convolutional in nature, since
G (7)) = G(p|§'; z—2') with § the 2-D transverse position vector.
This prompts an axial Fourier transformation, and the propagation
mode spectrum is consequently defined by the equivalent axial
transform-domain EFIE

i (k2 +W-)f G- FE g
c’ Jweée
=—t- @™ (50

where ¢ is the axial transform variable, V = #8/8z + $8/8y +
23¢, 75( 7 ¢) is surface current in the axial transform domain, C’ is the
cross-section contour and ‘g (7]7'; ¢) is a dyadic Green’s function for
the transformed Herztian potentials, appropriately specialized to the
background environment. Subsequent to the determination of F (7:0),
an inverse Fourier transform on ( is performed to recover the spatial
current I;;(i’). The appropriate Green’s dyadic decomposes into two
components—a principal dyadic, denoted as g’?, which describes the
potential maintained by the surface currents radiating in an unbounded
medium, and a reflected dyadic, denoted as ‘g’", which describes the
influence of the multi-layered background structure on that principal
potential. As detailed in [6], the Green’s dyadic in the axial-transform
domain takes the form
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with the scalar components of (4) having the Sommerfeld-integral
representations

vpeC (3)

4. _ oo e—Pc|y*9l| ]E(z—zl)
g"(/ﬂp,C)—/_oo Er— de¢ 5)
9: (A7 Q) o [ Be(N) e—Pely+y") ,
G170 ¢ = [ R p i @)
9: (P17 ) - | C(N) De

Wavenumber parameters p, = /A2 — kZ (i = ¢, f for cover or
film, respectively) arise from the transformed Helmholtz equation for
Hertzian potentials, while reflection and coupling coefficients R, 12,,
and C' depend upon details of the background environment through
the p. and possess denominators which give rise to pole singularities
in the complex ¢-plane. The Green's functions are one-dimensional
inverse Fourier transforms on the transverse spatial frequency §.

The quantity p. is multivalued, making branch cuts in the complex
&-plane necessary to render the integrands in (5) and (6) analytic. For
the microstrip transmission line under consideration, only the branch
point associated with p. is implicated (the branch points associated
with py, at A = xkj, are removable) and branch points occur at
A = k.. Branch cuts are chosen by enforcing the Sommerfeld
radiation condition; this leads to the well-known hyperbolic cuts in
the Sommerfeld (complex- A) plane [7], [8]. But, since \? = £+ (2,
it is apparent that the necessary branch cuts for representations (5) and
(6) are not independent of the cutting of the axial transform (complex-
¢) plane, but rather are related to one another and the unambiguous
cutting of the Sommerfeld plane.

III. CUTTING OF THE COMPLEX (-PLANE

The previous efforts [1]-[3] on the propagation-mode spectrum
of microstrip have failed to specify an explicit branch cut in the
complex (-plane. This oversight is readily explained. The transform-
domain current is found [9] to possess simple pole singularities
at ( = =(,, which naturally leads to the discrete propagation

modes. Those modes arise from residue contributions to the inverse
transform on ¢ when recovering the space domain current. The
discrete-mode current will take the form of K7(7) = Ul(z —
2 AL EES(7)eT%%, where k5 () satisfies the homogeneous spe-
cialization of EFIE (3). Quantification of the discrete modes is
typically terminated at this point. However, the process of recovering
the discrete modes through the axial inverse transform, though trivial,
assumes that the transform-domain current remains analytic in the
complex (-plane, an assumption that cannot be guaranteed until a
branch cut in the complex ¢-plane is specified.

A rationale for the (-plane branch cut is suggested by considering
the form of the principal Green’s function (5). This is the Green’s
function for an unbounded homogenous medium, and the inverse
transform can be performed analytically, resulting in the familiar
two-dimensional form of

(A0 = 1o (V2 ~ k25— 7)) @)

where Ly is the modified Bessel function of the second kind. Note
that representation (7) possesses an explicit square-root dependence
upon (, leading to branch points at { = k.. Assuming small
material losses (k. = ker + jke:, koo < 0), enforcement of the Som-
merfeld radiation condition requires Re{+/¢2 — k2} > 0 leading to
the conclusion that

—5 <Arg{VP R} < 3 ®

The branch cut which satisfies the restrictions in inequality (8) is
hyperbolic in the complex ¢-plane, initiating at the branch points
of { = =k, and extending asymptotically to infinity along the
imaginary axis, such that
kerke, .

Cb Cz +7J Clv
This branch cut separates the spectral and nonspectral (fop and bottom
Riemann) sheets in the complex (-plane, and is shown in Fig. 2(a).
Since the reflected Green’s functions arise from the principal Green’s
function (reflection of the principal wave), they share the same branch
points at { = %k, and the branch cut in defined in (9).

Another rationale for choosing the {-plane branch cut can be
obtained by considering the location and migration of the £- plane
branch points associated with p.. Occurring when the argument
of p. is zero, the branch points in the £-plane are located where
£ =k — ¢ or

€= —jV—k2=—j/(—kev/(+k

The location of £p is again defined through a square root, thus
requiting a branch cut in the complex ¢-plane to maintain analyticity.
The branch points £ = =+£p are fixed for the spectral £-plane
integration; however, as the value of ¢ varies, it is apparent from (10)
that the £- plane branch points will migrate. This can be potentially
disastrous, as migration of the branch points across the real-line
inversion contour in the ¢-plane will lead to discontinuous physical
phenomena and nonspectral behavior. To uniquely locate the £-plane
branch points in the upper/lower half plane, it is necessary to require
that Zm{€s} < 0, which in turn leads to

Re{\/(2—k2} > 0.

This latter condition in relation (11) exactly replicates that in (8),
thus leading to precisely the same hyperbolic cuts in the complex
(-plane as given in relation (9). This alternative rationale is based
upon physical wave phenomena, and represents a major contribution
of this paper.
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Fig.2. (a) Branch cut necessary in the ¢-plane to restrict £-plane branch point
migration. (b) Mapping of Sommerfeld-plane branch cuts into the £-plane for
proper modes of the microstrip, and illustration of the contour deformation
used for evaluation of the Green’s function representations (case of = < z').

Upon determining the branch cut in the (-plane, the three-
dimensional spatial microstrip surface current can be represented
as

N
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where & (7 ¢) is the solution to the forced transform-domain EFIE (3)
and Cg is the contour deformed about both sides of the branch cut in
the complex (-plane. This is a spectral superposition of all discrete
axial eigencurrents of the structure plus the contribution of the axial
radiation spectrum. The formulation in (12) is applicable for modal
decomposition in the anlaysis of scattering, coupling, or excitation of
EM waves along the open-boundary microstrip structure.

IV. CONSEQUENCES AND RELATION TO LEAKY MODES

Choice of description (9) for the branch cut in the complex (-plane
has direct consequences on evaluation of the inverse {-transforms
which define the Green’s functions in representations (5) and (6); as
the value of { changes, the locations of all the singularities in the
complex &-plane migrate. The most important consequence is that
the £-plane branch point g of p., as described above, is confined
to the lower half of the complex £-plane. The branch cuts in the

&-plane are simple mappings of those in the Sommerfeld A-plane
through £ = X% — ¢? for any given (. For any point on the spectral
(upper) sheet of the (-plane, the ¢-plane branch cuts take on the
familiar hyperbolic shape (Fig. 2(b) and separate the spectral sheet
of the £-plane from the nonspectral one. Once the £-plane cutting is
determined, the residues of the pole singularities in the integrands,
arising from the zeros in the denominators of reflection and coupling
coefficients Ry, Ry and C, are easily determined, providing that this
is done in a manner consistent with the ¢-plane cutting. Once all the
complex - plane singularities are determined, contour deformation
in the &-plane can be performed to evaluate the Green’s functions,
resulting in the general forms
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where g3 is any scalar Green's function component in representation
(5) and (6) and = refers to upper/lower half-plane closure for = > z’
or x < z'. respectively. Another consequence of working with the
spectral modes of the transmission line is that leaky-wave poles of
the background environment are never implicated.

Leaky wave modes for the microstrip transmission line can be
found by intentionally violating the branch cut defined by (9). The
most immediate consequence is that the branch point of p. in the
&-plane (+¢g) will migrate from the lower half-plane (LHP) to the
upper half-plane (UHP). This migration forces the real-line inversion
contour in the {-plane to be deformed, remaining above the original
LHP singularities, such that the forward transform on z remains
convergent [10], [12]. This is equivalent to Chew’s argument that
continuity of the physical problem must be maintained [11]. Branch
cuts in the &-plane still must be specified. When £p migrates from
LHP to UHP, an attempt to map the Sommerfeld-plane branch cut to
the £-plane through the relationship & = A% — ¢? results in a hyper-
bolic cut originating at +£p and passing asymptotic to the positive
imaginary axis, as indicated in Fig. 3(a). However, this branch cut
violates the deformed inversion contour and is not permissible. This
is as expected, since the mapping &% = A* — ¢? will enforce spectral
behavior on nonspectral modes. Having discarded the idea of mapping
the Sommerfeld-plane branch cut, any branch cutting in the &-plane
can be chosen, as long as it: 1) maintains the continuity of the physical
problem, and 2) does not violate the deformed inversion contour. The
first consideration, when taken in conjunction with decomposition
(13), forces the branch cut to approach infinity asymptotically along
the negative imaginary axis, while the second consideration forces it
to pass from the UHP, across the real axis, into the LHP. Any branch
cut obeying the above guidelines will not separate spectral (where
Re{p.} > 0) from nonspectral (where Re{p.} < 0) sheets in the
£-plane. A typical choice is shown in Fig. 3b, with the improper sheet
denoted by the shaded area. Locating the pole singularities must again
be accomplished in a manner consistent with the ¢-plane cutting.
The pole singularities, arising from the reflection and coupling
coefficients, are associated with the natural modes of the background
environment [9]. Those poles which occur on the proper sheet of the
£-plane correspond to the finite number of bound surface-wave modes
of the background structure, while those poles occurring on the im-
proper sheet correspond to the leaky-wave modes of that environment.

The most significant consequence of the given branch-cut choice
for leaky-wave modes is that the inversion contour remains on the
top sheet of the -plane, thus allowing for the use of techniques such
as Cauchy’s integral theorem to evaluate the inverse £-transforms
that represent the Green’s functions. The inversion contour passes
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Fig. 3. (a) Map of Sommerfeld-plane branch cuts into £-plane branch cuts
for leaky-wave modes, incorrectly passing through the. inversion contour.
(b) Typical £-plane branch cuts for leaky-wave modes. The shaded portion
indicates the honspectral region of the top sheet.

through a small portion of the nonspectral sheet of the {-plane,
which introduces the nonspectral behavior of leaky modes, but always
remains on the top sheet (Fig. 3(b)). This is in contrast to other work
[4] in which leaky modes are found by enforcing the Sommerfeld
branch cut that separates the spectral sheet from the nonspectral
sheet in the £-plane, then allowing the inversion contour to pass
through the Sommerfeld branch cut (Fig. 3(a)). While this procedure
maintains convergence of the forward transform on the x-coordinate,
the integration path passes from the top sheet to the bottom sheet and
back again. It is consequently impossible to apply Cauchy’s theorem.
Since the integrand is not analytic, existence of the inverse transform
cannot be assured, and no determination can be made of which, if
any, leaky-wave poles of the background environment are implicated.

V. CONCLUSIONS

A rationale for determining the axial radiation spectrum of mi-
crostrip iransmission lines has been advanced. The branch cut in the
axial transform plane, associated with the radiation spectrum, plays
an important role in the evaluation of the spectral integrals on the
transverse spatial frequencies, and provides a consistent methodology

for locating the associated singularities. Furthermore, techniques such
as Cauchy’s integral theorem are applicable, as integration paths
always remain on a single sheet, regardless of singularity location.
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Characterizing the Cylindrical Via Discontinuity

Paul H. Harms, Jin-Fa Lee, and Raj Mittra

Abstract— Design of efficient electronic packaging for today’s high-
speed digital circuits and monolithic microwave integrated circuits re-
quires accurate characterization of the electrical discontinuities that occur
because they can significantly degrade the circuit performance by intro-
ducing various effects such as capacitive and inductive loading. However,
discontinuities such as the cylindrical via are difficult to characterize
because its relatively complicated geometry must be accurately modeled
for good results. In this work, it is demonstrated that the nonorthogonal
finite-difference time-domain (FDTD) technique can handle cylindrical
via discontinuities without the use of an excessive number of unknowns
as would be required with an equivalent orthogonal FDTD approach.
Since the FDTD analysis is band limited in the frequency domain,
the inaccurate, high-frequency components need to be removed before
performing reliable transient analyses with the numerical results. The
use of window filters to solve this problem is discussed, and a Hanning
window is employed in a study of the transient response of an equivalent
circuit for the via.
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