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Spectral Analysis Considerations Relevant

to Radiation and Leaky Modes of

Open-Boundary Microstrip Transmission Line

Jerry Michael Grimm and Dennis P. Nyquist

Abstract—The continuous radiation spectrum of open microstrip trans-

mission line and its nonspectrat leaky modes are conceptualized through
a transform-domain integral-operator formulation and relevant spectral

analysis. Two complex (transform-variable) wavenumber planes are im-
plicated by Sommerfeld-integral representations of associated Green’s

functions and the necessary axial inverse transformatiou to the space

domain. The radiation spectrum is identified with branch cuts in the

axial wavenumber plane, which constrain the migration of branch-point
singularities in the transverse wavenumber plane. Leaky-wave modes

occur only when the branch cuts in the axial wavenumber plane are
violated, allowing branch points in the transvere wavenumber plane

to migrate across the (initial) real-axis integration path. The relation
between spectral radiation modes, nonspectral leaky-wave modes and
branch cuts in the axial wavenumber plane is discussed. The influence
of branch cuts in the axial wavenumber plane upon the location of
branch points in the transverse wavenumber plane is detailed, and
a rationale is offered for the choice branch cuts in the latter plane.

Although the formulation is developed specifically for the microstrip line,
it is applicable more generally to a wide class of open conducting or

dielectric waveguides. It is believed that the ideas presented here are
new and significant, and provide perhaps the first general method for

conceptualizing the continuous spectrum of practical open waveguides.

I. INTRODUCTION

Open-boundary waveguiding systems support not only a finite

number of discrete propagation modes but also a continuum of

radiation modes. Knowledge of these radiation modes is vital for

determination of losses due to radiation at circuit discontinuities,

scattering and mode-conversion from adjacent obstacles, and coupling

into other nearby open-boundary structures [1], [2]. Unfortunately,

the radiation spectrum of most practical open-boundary waveguides,

e.g. microstrip transmission lines, remains undetermined, This has not

deterred the analysis of radiation effects from microstnp transmission

lines, in which the continuous radiation spectrum contribution is

approximated by the leaky-wave modes of the transmission line.

Leaky-wave modes are discrete modes that possess nonspectral
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Fig. 1. Typical microstnp structure.

behavior (exponentially increasing amplitudes in the transverse plane)

and are not part of the proper modal spectrum. When the Steepest

Descent Contour (SDC) integration technique is used, the SDC

sweeps through poles associated with these nonspectral modes (the

leaky-wave poles) for restricted spatial regimes; in these regimes,

the leaky-wave modes approximate the continuous radiation spec-

trum. Consequently, the determination of the leaky-wave modes of

microstrip transmission lines has received much attention [3]–[5].

This paper will present a rationale for the specification of the

radiation spectrum associated with microstrip transmission lines, and

will address the issue of determining the leaky-wave modes of those

structures.

II. DEVELOPMENT OF RELEVANT GREEN’S FUNCTIONS

The configuration of interest is shown in Fig. 1. The microstrip

transmission line lies at the cover-film interface in the cover region

of a ttilayered, planar dielectric background environment. The cover

layer is assumed to be semi-infinite in vertical extent, while the

film layer has a finite thickness and is backed by a perfect electric

conductor. The layer interfaces are assumed to be infinite in transverse

extent, and each layer is homogeneous. A coordinate system is chosen

such that the z and z axes are tangential to the planar interfaces,

while y is normal to those interfaces.

A field incident upon the microstrip structure induces surface

currents; these in turn support a scattered field. By satisfying the

boundmy conditions at the surface of the microstrip, an electric field

integraf equation (EFIE), formulated in terms of electric Hertzian

potentials ~ (F,) supported by the induced surface currents l~(F’), can

be constructed as

= –i . E“’(7); v? E s. (1)

Uniformity of the background environment parallel to the z–z plane

prompts application of a two-dimensional spatial Fourier transform

on the coordinates tangential to the interfaces, defined as

where ~ = ii< + ,2~,A2 = <2 + <2, d2A = d~d<, and ~ and (

are generally complex-valued spatial frequencies corresponding to

the a and z spatial variables. The necessary Green’s function can

easily be determined in the transform domain [6]; a subsequent two-

dimensional inverse transformation will recover the space domain

quantities.
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The uniformity and infinite extent of the rnicrostrip line in the

axial direction (z) renders EF’IE (1) convolutional in nature, since

~(~F’) = ~(~~; z – z’ ) with ~the 2-D transverse position vector.

This prompts an axial Fourier transformation, and the propagation

mode spectrum is consequently defined by the equivalent axial

transform-domain EFIE

= –i. e?nc(fi<); V;cc (3)

where < is the axial transform variable, V = i~/dx + @/~y +

~~ <, %? <) is sutface cuent in the axial transform domain, C’ is the
cross-section contour and ~(~~; () is a dyadic Green’s function for

the transformed Herztian potentials, appropriately specialized to the

background environment. Subsequent to the determination of ~(~ (),

an inverse Fourier transform on ( is performed to recover the spatial

current 17 (F’). The appropriate Green’s dyadic decomposes into two

components—a principal dyadic, denoted as 7P, which describes the

potential maintained by the surface currents radiating in an unbounded

medium, and a reflected dyadic, denoted as ~“, which describes the

influence of the multi-layered background structure on that principal

potential. As detailed in [6], the Green’s dyadic in the axial-transform

domain takes the form

*[
V(d?’; c) = ~ 9P+ (iii + 22)9; +!)

(
&9:i + 9:C4 +.i<g:$ )1

(4)

with the scalar components of (4) having the Sommerfeld-integral

representations

J
~~–Pclv– Y’l

9P(FP;0 =
~~~(z–c’)d

4rrpc
( (5)

—CC

Wavenumber parameters p, = ~ (i = c, f for cover or

film, respectively) arise from the transformed Helmholtz equation for

Hertzian potentials, while reflection and coupling coefficients Rt, R.
and C depend upon details of the background environment through

the p, and possess denominators which give rise to pole singularities

in the complex &-plane. The Green”s functions are one-dimensional

inverse Fourier transforms on the transverse spatial frequency <.

The quantity p, is multivalued, making branch cuts in the complex

<-plane necessary to render the integrands in (5) and (6) analytic. For

the microstnp transmission line under consideration, only the branch

point associated with p. is implicated (the branch points associated

with pf, at A = + k f, are removable) and branch points occur at

A = +kc. Branch cuts are chosen by enforcing the Sommerfeld

radiation condition, this leads to the well-known hyperbolic cuts in

the Sommerfeld (complex- A) plane [7], [8]. But, since ~z = t2 + <2,

it is apparent that the necessary branch cuts for representations (5) and

(6) are not independent of the cutting of the axial transform (complex-

<) plane, but rather are related to one another and the unambiguous

cutting of the Sommerfeld plane.

III. CUTTING OF THE COMPLEX (-PLANE

The previous efforts [1]–[3] on the propagation-mode spectrum

of microstrip have failed to specify an explicit branch cut in the

complex (-plane. This oversight is readily explained. The transform-

domain current is found [9] to possess simple pole singularities

at c = +(P, which naturally leads to the discrete propagation

modes. Those modes arise from residue contributions to the inverse

transform on ~ when recovering the space domain current. The

discretejmode current will take the form of ~~ (F’) = U[+(z –

.z’ )] A: k: (F) e+J ‘P Z, where &(6) satisfies the homogeneous spe-
cialization of EFIE (3). Quantification of the discrete modes is

typically terminated at this point. However, the process of recovering

the discrete modes through the axial inverse transform, though trivial,

assumes that the transform-domain current remains analytic in the

complex (-plane, an assumption that cannot be guaranteed until a

branch cut in the complex <-plane is specified.

A rationale for the (-plane branch cut is suggested by considering

the form of the principal Green’s function (5). This is the Green’s

function for an unbounded homogeneous medium, and the inverse

transform can be performed analytically, resulting in the familiar

two-dimensional form of

(7)

where 1[0 is the modified Bessel function of the second kind. Note

that representation (7) possesses an explicit square-root dependence

upon (, leading to branch points at ( = +Icc. Assuming small

material losses (kC = ,& + jk.,, kc, < O), enforcement of the Som-

merfeld radiation condition requires l?e { ~~} >0 leading to

the conclusion that

(8)

The branch cut which satisfies the restrictions in inequality (8) is

hyperbolic in the complex <-plane, initiating at the branch points

of < = +,4., and extending asymptotically to infinity along the

imaginary axis, such that

(9)
<2

This branch cut separates the spectral and nonspectral (top and bottom

Riemann) sheets in the complex <-plane, and is shown in Fig. 2(a).

Since the reflected Green’s functions arise from the principal Green’s

function (reflection of the principal wave), they share the same branch

points at < = +kc and the branch cut in defined in (9).

Another rationale for choosing the <-plane branch cut can be

obtained by considering the location and migration of the &- plane

branch points associated with p.. Occurring when the argument

of p, is zero, the branch points in the <-plane are located where

~~ = k: – ~’, or

The location of ‘&B is again defined through a square root, thus

requiring a branch cut in the complex (-plane to maintain analyticity.

The branch points .& = *CB are fixed for the spectral t-plane

integratiory however, as the value of ~ varies, it is apparent from (10)

that the ~- plane branch points will migrate. This can be potentially

dkastrous, as migration of the branch points across the real-line

inversion contour in the ~-plane will lead to discontinuous physical

phenomena and nonspectral behavior. To uniquely locate the g-plane

branch points in the upperflower half plane, it is necessary to require

that Zm{fB } < 0, which in turn leads to

~e{~~-} >0. (11)

This latter condition in relation (11) exactly replicates that in (8),

thus leading to precisely the same hyperbolic cuts in the complex

~-phme as given in relation (9). This alternative rationale is based

upon physical wave phenomena, and represents a major contribution

of this paper.
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Fig.2. (a) BrmchcutnecessaV inthe<-plme torestrict &-plmebrmchpoint
migration. (b) Mapping of Sommerfeld-plane branch cuts into the f-pkmefor
proper modes of the microstrip, and illustration of the contour deformation
used forevaluation oftie Green' s function representations (case of I < x’).

Upon determining the branch cut in the <-plane, the three-

dimensional spatial microstrip surface current can be represented

as

p=l

(12)

where ~(fi <) is the solution to the forced transform-domain EFIE (3)

and C~ isthecontour deformed about both sides of the branch cut in

the complex (-plane. This is a spectral superposition of all discrete

axial eigenctrrrents of the stricture plus the contribution of the axial

radiation spectrum. The formulation in (12) is applicable for modal

decomposition in the ardaysis of scattering, coupling, or excitation of

EM waves along the open-boundary microstrip structure.

IV. CONSEQUENCESAND RELATION TO LEAKY MODES

Choice of description (9) for the branch cut in the complex ~-plane

has direct consequences on evaluation of the inverse ~-transforms

which define the Green’s functions in representations (5) and (6); as

the value of ~ changes, the locations of all the singularities in the

complex ~-plane migrate. The most important consequence is that

the ~-plane branch point & of pc, as described above, is confined

to the lower half of the complex f-plane. The branch cuts in the

f-pkme we simple mappings of those in the Sommerfeld A-plane
through~z = A2–<2 for any given<. Foranypoint on the spectral

(upper) sheet of the c-plane, the f-plane branch cuts take on the

familiar hyperbolic shape (Fig. 2(b) and separate the spectral sheet

of the <-plane from the nonspectral one. Once the <-plane cutting is

determined, the residues of the pole singularities in the integrands,

arising from the zeros inthedenominators ofreflection and coupling

coefficients RT, RN and C, areeasily determined, providing that this

is done ina manner consistent with the &plane cutting. Once all the

complex ~- plane singularities are determined, contour deformation

in the f-plane can be performed to evaluate the Green’s functions,

resulting in the general forms

.=1

‘“J(JCB,<
where g; is any scalar Green’s function component in representation

(5) and (6) and + refers to upper/lower half-plane closure for z > #

or z < x’. respectively. Another consequence of working with the

spectral modes of the transmission line is that leaky-wave poles of

the background environment are never implicated.

Leaky wave modes for the microstrip transmission line can be

found by intentionally violating the branch cut defined by (9). The

most immediate consequence is that the branch point of p. in the

<-pl~e (+(B) will migrate from the lower half-plane (LHp) to the
upper half-plane (UHP). This migration forces the real-line inversion

contour in the ~-pkme to be deformed, remaining above the original

LHP singularities, such that the forward transform on z remains

convergent [10], [12]. This is equivalent to Chew’s argument that

continuity of the physical problem must be maintained [11]. Branch

cuts in the (-plane still must be specified. When <B migrates from

LHP to UHP, an attempt to map the Sommerfeld-plane branch cut to

the ~-plane through the relationship &2 = AZ – <2 results in a hyper-

bolic cut originating at +CB and passing asymptotic to the positive

imaginary axis, as indicated in Fig. 3(a). However, this branch cut

violates the deformed inversion contour and is not permissible. This

is as expected, since the mapping <2 = AZ – (a will enforce spectral

behavior on nonspectral modes. Having discarded the idea of mapping

the Sommerfeld-plane branch cut. any branch cutting in the (-plane

can be chosen, as long as it: 1) maintains the continuity of the physical

problem, and 2) does not violate the deformed inversion contour. The

first consideration, when taken in conjunction with decomposition

(13), forces the branch cut to approach infinity asymptotically along

the negative imaginary axis, while the second consideration forces it

to pass from the UHP, across the real axis, into the LHP. Any branch

cut obeying the above guidelines will not separate spectral (where

%?e{pc } > 0) from nonspectral (where 7?e {pC } < O) sheets in the

t-plane. A typical choice is shown in Fig. 3b, with the improper sheet

denoted by the shaded area. Locating the pole singularities must again

be accomplished in a manner consistent with the (-plane cutting.

The pole singularities, arising from the reflection and coupling

coefficients, are associated with the natural modes of the background

environment [9]. Those poles which occur on the proper sheet of the

t-pkme co~espond to the finite number of bound surface-wave modes

of the background strncture, while those poles occurring on the im-

proper sheet correspond to the leaky-wave modes of that environment.

The most significant consequence of the given branch-cut choice

for leaky-wave modes is that the inversion contour remains on the

top sheet of the (-plane, thus allowing for the use of techniques such

as Cauchy ’s integral theorem to evaluate the inverse (-transforms

that represent the Green’s functions. The inversion contour passes
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(b)

Fig. 3. (a) Map of Sonunerfeld-plane branch cuts into g-plane branch cuts
for leaky-wave modes, incorrectly passing through theinversion contour.

(b) Typical t-plarte branch cuts for leaky-wave modes. The shaded portion
indicates the nonspectral region of the top sheet.

through a small portion of the nonspectral sheet of the (-plane,

which introduces the nonspectral behavior of leaky modes, but always

remains on the top sheet (Fig. 3(b)). This isincontrast to other work

[4] in which leaky modes are found by enforcing the Sommerfeld

branch cut that separates the spectral sheet from the nonspectral

sheet in the ~-plane, then allowing the inversion contour to pass

through the Sommerfeld brmchcut (Fig. 3(a)). While this procedure

maintains convergence of the forward transform on the z-coordinate,

the integration path passes from the top sheet to the bottom sheet and

back again. It is consequently impossible to apply Cauchy’s theorem.

Since the integrand is not analytic, existence of the inverse transform

cannot be assured, and no determination can be made of which, if

any, leaky-wave poles of the background environment are implicated.

v. CONCLUSIONS

A rationale for determining the axial radiation spectrum of mi-

crostrip transmission lines has been advanced. The branch cut in the

axial transform plane, associated with the radiation spectrum, plays

an important role in the evaluation of the spectral integrals on the

transverse spatial frequencies, and provides a consistent methodology

for locating the associated singularities. Furthermore, techniques such

as Cauchy’s integral theorem are applicable, as integration paths

always remain on a single sheet, regardless of singularity location.

Characterizing the Cylindrical Vla Discontinuity

Paul H. Harms, Jin-Fa Lee, and Raj Mittra

Abstract— Design of efficient electronic packaging for today’s high-

speed digital circuits and monolithic microwave integrated circuits re-
quires accurate characterization of the electrical discontinuities that occur

because they can significantly degrade the circuit performance by intro-

ducing various effects such as capacitive and inductive loading. However,

discontinuities such as the cylindrical via are difficult to characterize

because its relatively complicated geometry must be accurately modeled
for good results. In this work, it is demonstrated that the nonorthogonal
finite-difference time-domain (FDTD) technique can handle cylindrical
via discontinuities without the use of an excessive number of unknowns
as would be required with an equivalent orthogonal FDTD approach.
Since the FDTD analysis is band fimited in the frequency domain,

the inaccurate, high-frequency components need to be removed before

performing reliable transient analyses with the numerical results. The
use of window filters to solve this problem is discussed, and a Harming
window is employed in a study of the transient response of an equivalent

circuit for the via.

Manuscript received Jan. 28, 1992; revised May 15, 1992.
The authors we with the Electromagnetic Communication Laboratory,

Department of Electrical and Computer Engineering, University of Illinois,
1406 W. Green St., Urbana, IL 61801-2991.

IEEE Log Number 9204014.

0018-9480/93$03.00 @ 1993 IEEE


